IONIZATION-OVERHEATING INSTABILITY IN A
LOW-VOLTAGE ARC DISCHARGE

V. A, Zherebtsov and I. P, Stakhanov

We consider the stability of a layer of weakly ionized plasma between conducting electrodes closed
by an external circuit. It is assumed that the plasma ions are formed due to space ionization, and the elec~
trons are formed as a result of emission from the heated electrode (cathode). Such a system is called a
low-voltage arc or an arc with heated cathode. The voli—ampere characteristics of a low-voltage arc have
a region of negative resistance in which various instabilities of the overheating type can develop. Over-
heating instabilities have been investigated in a number of papers for semiconducting and gas-discharge
plasmas [1-3]. As distinct from the cases previously considered, the mechanism of overheating instability
is closely associated with the processes of space ionization which occur in the discharge. In this paper we
obtain a nonlinear equation describing the nonstationary low-voltage arc discharge which is inhomogeneous
along the electrodes. On the basis of this equation we investigate the stability of a homogeneous discharge.
We show that when the differential resistance is negative the discharge is unstable, and when it is positive
the discharge is stable. The development of perturbations which are homogeneous along the electrodes
leads to an overthrow of the discharge into that part of the characteristics in which they are stable. In-
homogeneous perturbations lead to the formation of a transverse inhomogeneous structure in the discharge
or a local reduction of the current density.

1. Let the origin of coordinates be chosen at the middle of the plasma layer under consideration;
the x axis directed perpendicular to the electrodes and the y and z axes parallel to them. The distance 21
between the electrodes is much less than their transverse dimensions, which are assumed to be unbounded.
As we know, in a low-voltage arc the plasma is separated from the electrodes by potential barriers which
restrict the electron flux from it (Fig. 1), As a result of this, and also because of the high thermal conduc-~
tivity of the electrons, we can assume that the temperature of the electron gas, Te, is independent of x.

We shall also assume that Ty is not a function of the time or the transverse coordinates in all terms
with the exception of the ionization rate coefficient «, which is very sensitive to temperature changes
(o0 ~ exp E4/Tg), Ei/Te ~ 20). The ion temperature Tj, which coincides with the temperature of the atoms,
is also assumed to be constant. We consider systems of such dimensions that we can ignore energy ex-
change between electrons and ions, i.e., Tg # Tj.

The electron Jx and ion jix flux densities can be expressed by the following equations:

Jo=—D, % 3% 1.1)
Y and a similar equation for the ions, where the diffusion coefficients De and Dj
" and the mobility coefficients ug and uj are determined by collisions with
/4% :% neutral atoms and are assumed to be constant. In view of the intense volume

ionization in a low-voltage arc,

4
-€

Jo>> o > Jlifu, 1.2)

and so

Fig.1
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. ¥ dn dn T,
fo = — ST Do — D22, Da:(i—f—Ti)Di (1.3)

ue
Here Dy is the ambipolar diffusion coefficient, It follows from the equation of continuity for ions that

5 52
%;—Da%ﬁ=om (1.4)

Here on is the number of ions originating in unit volume in unit time.

The stationary density distribution has a maximum [4] near the plane x = 0. Hence, in what follows,
to a sufficiently high degree of accuracy, we can assume that the solution of (1.4) is symmetrical and satis-
fies the following boundary conditions:

d 1 8T, \"e
D, % popy = T TV (Di: (W) ) (1.5)

Here n; is the plasma density at the cathode (x =—1) or the anode (x = I). The coefficient 1/2 on the
right side of (1.5) is chosen so as to take account of the departure from equilibrium of the ion distribution
due to the effect of the electrode.

As a result, in the stationary case,
n =mn,cosyz/cosyl (x=Va/ Dy (1.6)

It was shown in [4] that
Syltgyl=1, yl=1,a(1 —08), 8§=2D,/vl<<1 (1.7)

It follows from the foregoing results that the ion flux is symmetrical to both electrodes, while the
electron current Jyx flowing from the cathode to the anode is small by comparison with each of the com-
ponents separately on the right side of (1.1).

2. The problem below is to obtain a closed system of equations describing the nonstationary pro-
cesses in a low-voltage arc. We shall assume that the discharge can be inhomogeneous with respect to y
and z. In accordance with the considerations which follow, we can considerably simplify the problem under
discussion. ‘

We note that the set of solutions of the equation

2
d"k_

T = — Tk @.1)

with the boundary conditions (1.5) forms a complete orthonormalized system of functions in the interval
—l < x < I, the eigenvalues of which are determined from the solution of the transcendental equations

Syultg yal =1 for £=1,3,5...; — Syulctg el =1 for k=2,46,... 2.2)

The completeness and orthogonality of this system follow from the self-conjugacy of the operator
2.1). As 6 — 0 the solutions of (2,2) transform to the form

Vel =, k- (k=1,2,3,..) (2.3)
We seek the solution of the nonstationary plasma diffusion equation
_n oy on #o
i —{—Daazz—f—DGAJ_n—{—an:O, A_L=a—y-z+b—z—2— (2.4)
in the form of a series
n= 2 Ni(t,y,5)n (v)
k=1 * f (2.5)
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Then, for the coefficients of that series we have
— 0N /0l + DA Ny - (00— )N, =0 (2, =7,2D,) (2.6)
It is easy to see that in the stationary and homogeneous (with respect to y,z) state the unique positive-
ly defined solution of Eq. (2.6) in the interval -l < x < [ is
& = 0y, NI#O? Nk = 0 fors k=1 (27)

This corresponds to the results (1.6) and (1.7). Further, from (2.6) we see that if, in the nonstation-
ary state, the value of « is less than «,, then, for all k, apart from k = 1, Ni is exponentially damped, and
thus the general solution of (2.5) reduces to the solution with separated variables

n = Ny(t, y, 2) cos yz = ny(t, y, z) cos yz/cos yl (2.8)

where ¥ =7, is defined by (1.7). The next term in the series occurs only when o is made greater than
o, & 4wy, Thus, there is a wide region of nonstationary states in which the solution can be represented as
(2.8). In what follows we restrict ourselves to just this region.

If we integrate Eq. (2.4) with respect to x from —I to I, and note that, as will be shown below, the
term D, A, n does not make a significant contribution to the final result, we find that

. 1
ON /3t J-vin, —aN =0, N = S ndx (2.9)
—1 )
- It follows from (2.8) that
2 D
n, = bN, b="Tf,_l (2.10)
Thus,
oN D,

S T@—)N=0, B=—r (2.11)

To obtain a closed system of equations we compute the potential drop in the interelectrode space. It
follows from (1.1) that

¢=w1+ln%+%§£dx (0= (2.12)

The pre-electrode potential discontinuity ¢, at the cathode and Ay, at the anode are determined from
the equations

Ji=Jr — Yo exp (— ), Jp = Yanv,0xp (Ahy) (2.13)

Here JR is the flux density of electron emission and Jy , are the flux densities of the electrons at the
cathode and the anode. It follows from (2.12) and (2.13) that the total potential drop in the discharge, U, is
(in units of Tg/e)

U=t () + A —ln 2 g g { 2 2.1

In what follows we shall assume that the derivatives along the electrodes are small by comparison
with the derivatives with respect to x. This implies that

8 =J, — Iy < Jy (2.15)

Further, in the integral on the right side of (2.14), the basic contribution comes from the regions
near the electrodes, where the plasma density is small. As a result,
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I
{ To gp— Tt = 2.16)

For the density distribution (2.8), the integral (2.16) is

. ,
—i%:%l :——lzl (mﬁ) (2.17)

If we expand the first term on the right side in (2.14) in terms of 6 J and use (2.16), (2.17), we obtain

I I 1 1 T S _ DN
U—tn =L (2 + 5oL I=7, 8I=7-, v=g= 2.18)

For small 61 the term In [I/(1 —1I)] is the total voltage drop in the pre-electrode layers, I/v is the
potential drop in the plasma, the term ~&J is the change in the potential drop due to currents flowing along
the electrodes.

We consider now the energy balance in the electron gas
divgq=—anE;, ¢=J2T,—ep)—2DnyT, 2.19)
Here Ej is the effective energy lost by the electron gas in one ionization act. The energy fluxes enter-
ing the electron gas at the cathode and anode, respectively, are [4]

T
g = 2Ty — AT, = T)Tn, = QT —eN) Ty (V=220 (2.20)

Here T, is the cathode temperature. In evaluating (2.20), we assume that the cathode surface is at
zero potential, Integrating (2.19) with respect to x from —I to I and using (2.20) and the equation of con-
tinuity for electrons, divJ = 0, we obtain

UI—a—i—snv—VJ_SJ Vdz 2.21)

I TN ORI

where J, is the projection of the vector J on the yz plane. We see from (2.21) that the energy introduced
by the current into the interelectrode space (IU) is expended on heating the electron beam leaving the cath-
ode to temperature T (coefficient a), on ionization (env),and on the creation of an energy flux along the
electrodes carrying the transverse current. Because the energy of the electrons is small, in computing the
energy balance and the voltage drop we can neglect the time derivatives.

3. Consider a discharge which is homogeneous with respect to y and z. In this caseV, =0, 61=0,
and Egs. (2.11), (2.18), and (2.21) can be written as

dv I I
T L —=0v=0, JTU—a=exv, U—In ~7=- (3.1)
where 7 = gt. In the stationary case » =1, and
y . a I

Equation (3.2) isthe volt—~ampere characteristic of the discharge since, by (1.7), the electron tem-
perature Tg is independent of the current [4]. For & <« 1, it can be approximated by the following two equa~
tions:

I _,

=U—2 — =U —1Inp—
f=U0 0, g=U ln1__I (3.3)

The first of these gives a branch with negative differential resistance.

375



In the nonstationary case, Eq. (3.1) forms a closed system for the variables v,u, I. The voltage drop
U is associated with I through the equation

U=E —rl r=¢RSJR/T, (3.4)

where E is the emf in the external circuit, r is the nondimensional resistance of the external circuit, eSJg
is the emission current from the cathode, If we eliminate w and v from (3.1) and use (3.4), we obtain

I s 1
s e B (= (3-5)

\
The functions F and g were defined above.

For small deviations from the equilibrium state

[=I,+I' U=U,—rl' (3.6)
the function F(U, j) can be written as

FU, 1) =F Wy I +(55), 1" = (55,0’ 6.7

The derivative (9F/8l)y can be expressed in terms of the differential resistance rq = (8U/8)p=¢.
Differentiating the equation F = const, we obtain

aF aF\ [8U
(TI_)U = — (W)r \\7,7‘>F =—(g+rq (3.8)
Noting that F(U,, I;) = ¢ and linearizing (3.5) with the aid of (3.7) and (3.8) we can obtain

S =4ttt (3.9)

av g Gg —+rlp

We see from Eq. (3.9) that, since f, g, and G are positive, when —ry < r, the discharge is stable,
while when —rg > r, instability develops. A similar result was obtained in [5], where certain simplifying
assumptions in this paper were not made (in particular, assumptions about the symmetry of the plasma
density distribution in the layer),

We turn to an analysis of the nonlinear equation (3.5). The volt—ampere characteristics of the dis-
charge (3.2) are given in Fig. 2 for € = 0.1, a =1 (curve 1) andloading characteristic (3.4), Curves 3 and
4 represent the functions f=0and g =0. Below curve 3 and above curve 4 there are forbidden regions, since it
follows from (3.1) that v < 0 there. Below the curve 3 the energy introduced into the discharge (UI) is not
sufficient to heat the electrons leaving the cathode to the temperature T,. Hence the discharge is sup-
pressed on this curve. The region above curve 4 can only be reached if there are emf sources inthe plasma.

As we can see from (3.5) (cf. also Fig. 2), on the right of the volt—ampere characteristic di/dr > 0,
while on the left dI/d7 < 0. The load line (3.4) intersects the volt—ampere characteristics at two points,
the upper point of intersection B being always stable, while the lower A is unstable. Any current perturba-
tions at A lead (depending on the sign of the perturbation) either to quenching of the discharge or to transi-
tion to the point B of stable equilibrium, Since this conclusion is obtained from a nonlinear equation, it
holds not only for infinitely small, but also for finite perturbations,

To explain the instability we can assume the following physical
7 mechanism, For simplicity we put r = 0. As a result, let the random
fluctuation in the density v increase slightly., This leads to a reduction

N
\ 2z ]
)JX N\ o in the potential drop in the plasma volume I/v by an amount —IAv /v 2,
5
N\
™

071 h Since U must remain constant, by (3.1) the current through the discharge
' y must increase by an amount
a5

. rPQ—I Av
" Al =rr=p3v~

1% T 22 In turn, this leads to an increase in the energy introduced into the

Fig. 2 plasma by an amount UAIL. If this were greater than the increase in the
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ionization losses eA v [cf. Eq. (3.1)], the density fluctuations would increase and the system would depart
from its initial state, Thus, for instability it is necessary that

ur 1rq—r
A
As a result of this, in the lower part of the characteristic [for v « I(1 —I)], where the ionization

losses are small and the potential drop in the plasma is large, instability occurs. Quite a different situa-
tion is created in the upper part of the characteristic [v > I(1 —I)]. There the jonization losses are large,
while the role of the potential drop in the plasma is insignificant, and is easily compensated by a small
change in the current, Thus, the upper part of the characteristic is stable. A similar process also occurs
when there is a fluctuating reduction in the density. The criterion obtained above coincides with the condi-
tion for a positive increment in Eq. (3.9).

4, Consider the behavior of perturbations which are inhomogeneous with respect to y and z, when
the characteristic dimension of the inhomogeneity is much greater than the distance between the elec~
trodes (21). In this case, the terms in Eqgs. (2.18) and (2.21) containing 6I and V, are small; a similar
statement can also be made about the equation

I =—=DNVn+unV, ¢=— D[V n—nV, ] @.1)
Further, it follows from (2.13) that

1;;1:1114_"1”1__ “.2)
g —J)) .

In substituting (2.12) and (4.2) into (4.1) we can assume that J = J; ~J,. Then, noting that the elec-
trodes are equipotential (v, U = 0), we can obtain

v Jp ¢ dz\ V!
J_L:Den<1———1— De Sl-—n—)‘“—:l_] (4.3)

In deriving (4.3) we used (2.8) and (2.18), in which, in this case, we can put 61 = 0, Noting that divd =
0, from (4.3) we can obtain

! x .
. VJ_I v Jp dz 1
SJ_—DNJ_[T_—ISn(1—~~I—D—e ST)de
- —1
Since the density n has a maximum at x = 0, the term in parentheses can be taken outside the integral
sign for x = 0. Then

87 =— DI INDID)VLIL P =gy (4.4)

The same result is obtained if the integral is evaluated exactly. Similarly, we can evaluate the inte-
gral

J4

SJJ_quxz De[¢1N+ Slnln%dx}p(f)vlf

3 (4.5)

The last term on the right side of (2.12) is less than the two other terms. Hence, when we substitute
(2.12) in the integral (4.5) this term can be omitted. When we evaluated (4.4) the term was retained since
its derivative makes an appreciable contribution [the factor (21 — 1)/2I instead of 1]. We can evaluate the
integral on the right side of (4.5):

3

!
_Snln%dx:—%S—j—(%fdx:N[ln (%)—1} (4.6)

i —I

Thus, from (2.11), 2.18), (2.21), (4.4), (4.5), and (4.6) we obtain the following system of equations:

z—:—{—(l—u)v=0 4.7
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I 1 1 ’ rry =
U—Ing—==4+1=7VL [PV IT (v =Viv)) (4.8)

Ul —a=exv—V ' [pI) (W, + )¥vW'I1  (c=1n{E/nd)—1) 4.9)

The variables v, n, T, € are defined above, In deriving (4.8) the second term in parentheses in (2.18)
was omitted by comparison with the first, since v > 1 over a large part of the volt-ampere characteristic.
If we take account of transverse diffusion in (2.9), the following term appears in (4.7):

[41n (4] n8)I1A v

which is small by comparison with the remaining terms containing transverse derivatives (6 «1). Taking
account of these terms does not produce any "qualitatively new results and leads only to a more laborious
computation,

If in (4.7)-(4.9) we ignore the derivatives, we can obtain, as a first approximation, equations describ-
ing the homogeneous stationary state. Because the increments and the transverse inhomogeneities are
small, these equations can be used to transform the terms in (4.7)-(4.9) containing derivatives. If we take
this and the expressions for wv from (4.9) and v from (4.8) into account, we can write (4.7) as

0L _ ¢ L U _ o9, Ip(I) @ + ) vV 'T] + (4.10)

SGW g ot

+e—7 VL IpDv I —I1F (U, I)—e] =0
Here, in accordance with (3.1) and (3.3), and assuming that the terms containing transverse deriva-

tives are small, we can put ¥ = fI/¢. In (4.10) we neglect the squares of the slopes and assume that the
perturbations do not change the total current, as a result of which 9U/87 = 0; then we obtain

0L _p( AN IAT—IIF (U, D—el =0, A= +c—L 1y (4.12)

Equations (4.10) and (4.11) describe a low-voltage arc discharge which is inhomogeneous in the trans-
verse coordinates, \

5. As was shown above, instability of the perturbations which are homogeneous with respect to y, z
leads to an overthrow of the discharge into a stable part of the volt-ampere characteristic, Consider small
perturbations in which the wave vector is directed along the plasma layer

I =1, 1I() exp (ikyry) (5.1)

In the linear approximation, from (4.11) we have

dar I '
S =pl—ra(g+ N — ki *pA)] (5.2)
where the differential resistance is
1 i a i
rd:T(_i—lf—Tg)f+g (5.3)

We shall consider a region near the turning point of the volt-ampere characteristic (rg = 0). In this
case

1,>0.5, —2—1_10 ~a=1

and, since ¥, + ¢ »> 1, we find that p > 0, A > 0, Hence the term proportional to kﬁ_ is positive and leads to
damping. We note that this damping occurs not as a result of diffusion or thermal conductivity, but due to
the appearance of transverse currents causing a redistribution of the Joule heat. The first term in brackets
in (5.2) for rq < 0 gives an increment the nature of which was studied above. As we see from (5.2), in the
lower part of the volt-ampere characteristic (rq < 0) the perturbations are unstable when k; is sufficiently
small. The wavelength of the unstable perturbations satisfies the inequality

-
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& ASA, =2nVd (M)"”

[rglG+2) (5.4)

Since rq is small and vd > 7, in the whole region of unstable wave-
lengths, including the boundary (A =X ), the assumption made in deriving

§ I o s .
9 o I (4.10), (4.11), that the transverse slopes were small, is justified,
1(2
i Thus, in the lower part of the volt—ampere characteristic, a discharge
Fig. 3 which is homogeneous with respect to y, z is unstable for perturbations with

A > Ax irrespective of the resistance of the external circuit. As a result, in
the range in which the resistance is negative, for sufficiently large electrodes
there must develop a discharge which is inhomogeneous in the transverse direction and which is described
by the nonlinear equation (4.11). Below we consider stationary solutions of this equation. When 8/8t =0,
it follows from (4.11) that

, do (I F({U I)—e
Ml ==, o) =\ g 4 ©-5)

The extrema of the function @ () correspond to points onthe volt—ampere characteristic (3.2), there
being a maximum on the upper branch [I(Z)] and a minimum on the lower I(1) (Fig. 3).

In the one-dimensional case, (5.5) has the form of the equation of motion of a point in the potential
field @ (). It has a singularity of type "center" for ry < 0 and of type "saddle" for rq > 0. Thus, after
passing through the turning point ofthe volt—ampere characteristic, when the homogeneous state becomes
unstable, it is possible that a new stationary state of one of the following two forms is established:

1) Against the homogeneous background of the discharge with current density I = 1@) there is a wide
region with reduced current density "“soliton quenching" correspond1n§ to the separatrix in the phase
plane), the current at the minimum [1(3) ] being less than the current [I ] on the lower branch of the volt—
ampere characteristic (for given U);

2) the current density oscillates along the electrodes about the value I(l), so that the discharge has
a transverse periodic structure.

For small perturbations the soliton solution has the form

I=1%— (% — [®gch? (y/A) (5.6)
where
3
1(2)_ 1(3) — ___[3 (1 ~1) fi‘g ra ,IzI(z) (5.7)
_ 8 rpDAD 7 EN LT
A“nl[ f+eg 1( 5)'] 1=I<z)>l 5-5)

Although we have only considered the one-dimensional case above, we may hope that the cylindrically

symmetrical solution also has a similar character. The stability of these new stationary states still has to
be investigated.

It is possible that the formation of laces which are observed experimentally when the discharge is
quenched [7] and the periodic transverse discharge structure amounced in [6] are the results of the develop-
ment of the above-mentioned instabilities,
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